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Abstract We consider correlations and spectra of sfrange non-chaotic attractors in 
quasiperiodically driven nonlinw systems. It is demonstrated that a selfsimilar autocarrelation 
function and a singular continuous spectrum may be observed in such systems. The properties 
of correlations and spectra depend very subtly on the rotation number of the quasiperiodic force 
and on the parameters of the system. for some parameter vdues the usual discrete spechum is 
restored. 

1. Introduction 

Strange non-chaotic attractors typically appear in quasiperiodically forced nonlinear systems. 
These attractors were first described by Grebogi elal in 1984 [ 11 and since then investigated 
in a number of numerical [2-71 and experimental [8,9] studies. A typical system considered 
in most of these works is a nonlinear oscillator with quasiperiodic (two-frequency) forcing. 
With increase of the force amplitude, a transition to chaos, when the largest Lyapunov 
exponent becomes positive, is usually observed, and strange non-chaotic attractors appear 
in a region of parameters just below this transition. SNAs exhibit some properties of regular 
as well as chaotic systems. Like regular attractors they have only negative and zero 
(connected to quasiperiodic forcing) Lyapunov exponents, like chaotic strange attractors 
they are fractals. Both these properties are rather difficult to verify in numerical, and 
moreover, in real experiments. One very common tool in investigation of complex regimes 
is calculation of the autocorrelation function and the power spectrum. In the case of periodic 
(quasiperiodic) oscillations the spectrum is discrete and the autocorrelation function returns 
(almost exactly) to 1. For chaotic oscillations the spectrum has a continuous component, 
and the autocorrelation function decreases. 

In this paper we focus just on the correlation and spectral properties of SNAs. Our main 
result is that SNA can have singular continuous spectrum. This spectrum is intermediate 
between regular and random, and has been recently investigated in some models of 
quasiperiodic lattices and quasiperiodically forced quantum systems [ 10-131. We will 
present here only the phenomenology of the autocorrelation function and the spectrum, 
based on numerical analysis; a renormalization group study is now in progress [14]. 

The paper is organized as follows. In section 2 we describe the basic models of SNA we 
will deal with. In sections 3 and 4 the properties of autocorrelation function and spectrum 
are discussed. In section 5 we compare our findings with other studies of spectra of SNAS, 
as well as with other cases of singular continuous spectra. In appendix A the necessary 
properties of quasiperiodic functions are described, while in appendix B the properties of 
correlations and spectra of usual quasiperiodic motion are summarized. 

0305-4470/94/155209+1l5l9.50 @ 1994 IOP Publishing Ltd 5209 
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2. Basic models 

Our basic model will be the SNA first proposed by Grebogi eta1 [ l ]  and then studied in [7]. 
The system is described by the map 
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x,+] = f(x,,BJ = 2u(tanhxn)cos(2z~,) (1) 
e,+, =e,, to mod 1 .  (2) 

One can consider ( I )  as a quasiperiodically forced map, and the external force is 
multiplicative. The frequency of the forcing is given by the parameter w (rotation number 
of the map (Z ) ) ,  which should be irrational. The parameter U should be larger then 1 for the 
SNA to exist [ I ] ,  otherwise the value of U appears not to influence the qualitative properties 
of the system, so we will f i x  it at 0 = 1.5 as in [I]. We will refer to the system ( 1 )  and 
(2) as ‘model A’. In the previous papers [ I ,  71 only ‘the most famous’ rotation number- 
the golden mean w = wgm = (8 - 1)/2-was used. In this paper we will also study 
other irrationals. The properties of irrationals and their resonances are described briefly in 
appendix A. 

The first, where the 
quasiperiodic force acts both multiplicatively and additively 

We will also consider two generalizations of the map (1). 

x,+l = f ( x n ,  e,) = zu(tanhx,) cOs(zze,) + O 1 ~ ~ ~ ( z ~ ( e ,  + p i )  (3) 
has already been investigated in [ I ,  71. In [7] it was shown that the SNA exists only for 
01 = 0, although for small 01 it is rather difficult to distinguish the existing smooth torus 
from a SNA. We will use this example (referred to as model B) to discuss differences in the 
spectra of usual quasiperiodic motions and SNA. 

Another generalization is 

xn+l = f ( x , ,  0,) = 2u(tanhxn)(cos(2z6,J -i- y )  . (4) 

Here the quasiperiodic force remains purely multiplicative, but now has a zero-frequency 
component, proportional to y. Using the same arguments as in [ I ] ,  one can show that the 
SNA in the system (4) and (2) (referred to as model C) exists also for non-zero y .  We 
will see, however, that the properties of correlations and spectra depend drastically on this 
parameter. 

3. Autocorrelation function 

The (normalized) autocorrelation function (AF) of the stationary process xI, t = 0, 1.2, . . . 
with zero mean value is defined as 

Applying this to the system (1) and (2) one can consider the averaging as the averaging 
in time, due to ergodicity of the map (2). For usual quasiperiodic motion the AF never 
reaches 1, although comes very close to 1 at the resonant times (we give a decription of AF 
and spectra for usual quasiperiodic processes in appendix B). 

3.1. Model A: golden mean mtation number 

We calculated the AF for the SNA in the system (1) and (2) for the golden mean rotation 
number w = wW and present the results in figure 1. It can be described as follows. 



Strange non-chaotic attractors 521 1 

c 0.5 

2 
6 0.0 z 
2 

' - 0 . 5  

.. 

Figure 1. The autocorrelation function for the golden 
mean rotation number for model A. The main peaks at 
the resonant times T = qb.1 are pointed out. 
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Figure 2. Comparison of two parts of the AF figure I: 
15&1 2084 2554 3084 3584 one n w  7 = 0 and the other near T = 911 = 2584 

(this part is scaled such that R(2584) = 1) .  

(i) The AF never reaches values close to 1 for r > 0. We have found that maxr* IR(s)l 
0.55. 

(ii) The AF reaches maximum values for r, = qSn-I = 2,8,34,  . . . , where the 'resonant 
times' q,, are defined by the expansion of the ogm into continuous fraction (see 
appendix A). Note, that only even reSonant times are present. For n > 3 the values of 
the AF at these resonances are approximately constant, only the sign is alternating. 

(ii) The AF is extremely small for odd T .  We have found, e.g. that the sum R2(2s - 1) 
is of order of suggesting that one can neglect the values of R(r )  for odd r .  

(iv) The AF appears to be self-similar. Its structure near the resonant times almost exactly 
repeats, with appropriate scaling. the structure near r = 0. This is clearly seen in 
figure 2, where the region near r = 2584 is compared to the region near T = 0. This 
self-similarity can be quantitatively represented as 

R(ra & A T )  EZ: R(Ar)R(r,,) (6) 
where AT counts significant peaks of resonances at TO, 51, . . . , r,-l. We have found 
that the relation (6) for large n is valid within an accuracy of a few percent, and for 
many peaks even with much higher accuracy. The whole AF may be thus described as 
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the following. 
The main (zero-order) peaks at r,, for large n they have approximately the same 
amplitude 
The first-order peaks at ‘harmonics’ r,*rk, (k < n) have amplitudes R(rn)R(rk) 

The second-order peaks have amplitudes of order x3 at higher-order harmonics, etc. 
There are also peaks at the second harmonics of the times in the hierarchy above, 
(e.g. at 2rn) they have relatively small amplitudes (C 0.1). 

E 0.55 and alternating signs. 

G” 

These properties describe the AF of SNA as a self-similar object. The scaling appears as a 
periodic structure if the AF is presented versus the logarithm of time (figure 1). 

3.2. Model A: other rotaion numbers 

We now describe the properties of AF for some other rotation numbers. ‘The second 
simplest’ irrational rotation ‘number is the ‘silver mean’ wsm = - 1, whose continuous 
fraction is [2, 2, . . .I (see appendix A), The AF for the silver mean, presented in figure 3(a), 
is very similar to that for the golden mean. It can also be described as a self-similar object. 
The zero-order peaks have slightly larger amplitudes (= 0.65). and are placed at the even 
resonance times rn = qk = 2, 12,70,. . .. The values of AF for odd 5 are very small, and the 
second harmonics at r = 25, have relatively high amplitudes. A similar picture is observed 
for a ‘random’ irrational number. whose continuous fraction is produced by randomly chosen 
1’s and 2‘s (see appendix A). Now zero-order peaks are placed at random t i e s ,  where the 
even resonances appear (figure 3(b)), also the alternating of their signs is not perfect. 

The observation that the main peaks occur at even resonances suggests investigation 
of irrationals that do not have such resonances at all. We have studied two examples: 
modified silver and tin means, described in appendix A. Remarkably, for these irrationals 
the AF does not have zero-order peaks, only the relatively small peaks at combinational 
resonances (which, of course, are even) and second harmonics appear (figures 3(c) and 
3 ( 0 .  

3.3. Models B and C 

I t  is not surprising that in the model B for a non-zero U, when the SNA disappears. the usual 
structure of quasiperiodic autocorrelation function with many recurrences to one is restored 
(figure 4(a), note the linear scale of time here in contrast to figure 1). More interesting is the 
case C, when the SNA still exists, but its AF is similar to that of usual quasiperiodic motion 
(figure 4(b)). It seems that the structure of quasiperiodic function-whether it is self-similar 
like in figures 1-3, or resembles usual quasiperiodic behaviour like in figure 4(b>-depends 
very subtly on the parameter y .  Similar properties have the systems considered in [12, 131, 
where spectral properties depend subtly on the ratio between parameters. Detailed analysis 
of this dependence will be presented elsewhere. 

4. Spectrum 

Usually, two types of power spectrum are observed in dynamical systems: discrete 
and continuous. Discrete spechvm is represented by &peaks at certain frequencies and 
corresponds to the regular part of the process. Continuous spectrum (often called broad- 
band noise) corresponds to the irregular component of motion. The spectrum of a regular 
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Figure 3. The autoconelation function for the model A for different rotation numbers: (a) silver 
mean, (b) random. (c)  modified silver mean, ( d )  modified tin mean. For cases (a) and 
(b) main even resonances are pointed. For cases ( e )  and ( d )  there are no even resonances. 
The main peaks pointed in the figures are combinations of resonant times. In lhe m e  (c) :  
140 = 47 - 4s. 338 = q8 - 96, 816 3 49 - 4,. 1970 = 910 - 48. etc. In the case (d) :  
466 4s f q4, 754 45 X 2, 1220 = q6 - 45. 1974 = q6 -t 45, 3194 = 96 X 2. etc. 

motion (periodic or quasiperiodic) is purely discrete, while chaotic behaviour gives a 
continuous spectrum (sometimes in combination with a discrete one, e.g. for periodically 
forced systems). 

Recently, a new type of spectrum that is intermediate between discrete and continuous, 
was described [10-13]; it is called singular continuous spectrum. To define it let us consider 
a Fourier transform of a process x i :  

which defines a path on a plane (Re X, Im X) when T is considered as time. If in this path 
there exists a persistent motion (drift), then IX(S2,  T)Iz - T 2  and there is a discrete spectral 
component at frequency Q. If the path is random (Brownian motion), then IX(C2, T)I2,* T 
and there is a continuous spectrum for this frequency (if there are both drift and random walk, 
then the spectrum has both discrete and continuous components). A singular continuous 
spectral component appears if IX(S2,  T)Iz - To, where the exponent ,3 # 1,.2. Usually a 
fractal self-similar path on a plane (Re X, Im X) corresponds to this component. 
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Figure 4. (a) The autocomelaon function 
for the models B with OL = 0.5. (b)  The 
autocorrelation function for the models C 
With golden mean rotation number and y = 
- cos(no). 

4.1. Model A: golden mean rotation number 

In our study of spectral properties we are basing on the ideas of [ E ] .  As it follows 
from the results of [12], one can expect to obtain non-zero spectral peaks at frequencies 
R = ( I  + m w ) / n ,  with integer l , m , n .  In figure 5 we show IX(S2, T)I2 versus T for 
some frequencies R. We see that for some frequencies (Q = 4 and ‘2 = &J) the 
logarithm of the spectrum appears to grow linearly with log T. with periodic modulation. 
For other frequencies (e.g. S2 = CO) the spectrum does not grow. We have tried different 
frequencies R = (1 + mo)/n. and never found a discrete or a continuous component 
of the spectrum. The spectrum seems to be purely singular continuous, and different 
components of it have different exponents p, e.g. p(R = i )  ir. 1.14, p(Q = 4) w 

1.2, @(a = :) = @(R = :) Ez: 1.58. @(R = i w )  W 1.14, @(a = 4.) FZ 0.98, 
while @(R = i) = p(Q = 0) = @(a = i w )  = 0. It appears that to the each of the 
above mentioned values of R a set of frequencies with the same behaviour is attached: 
p(S2 -I- kw mod 1) = p(S2) for integer k.  

The power law behaviour of the ‘spectral random walk’ corresponds to a nice fractal 
object on the (Rex, Im X) plane LIZ]. Graphs at the suitably adjusted times (comesponding 
to the period of modulation in figure 5 )  show a self-similar walk (figure 6). Note that these 
times are exactly the resonant times for which the main peaks in the correlation function 
appear (in fact, only the ratio of these times is important). It is worth noting that the self- 
similarity is more perfect for large T (one can also see this from figure 5 ,  where periodicity 
is not perfect for T < 200). 
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Figure 5. Spectral components IX@. T)12 as function of T for the 
model A with golden mean rotation number. Curve (a) $2 = a. 
curve @) $2 = io, curve (c) $2 = o. On the curves (a) and 
(b) the full circles mark pasitions 112 = 144. q is  = 2584. qw = 
46368, 410 = 832040 which appear to be periods of the spec“.  
some of these points are presented in figure 6. The lines correspond 
to the best linear fits with the slopes given in the text. In the case 
(c) the spectrum seem not to g o w  with T (01 at least the growth 
rate is very small). 

T=46368 
Figure 6. Specuum of the SNA as a path on the (Rex, ImX) plane, 
for frequencies $2 = 4 and 51 = io. The pictures for different T 
are scaled to make self-similar suuctwe of the fractal evident. The 

*114 -4 dots mark the starting point T = 0. 

4.2. Model A: other rotation numbers 

The properties of the spectrum for quadratic rotation numbers (see appendix A) are very 
similar to that for the golden mean. There seems to be no continuous and discrete 
components in the spectrum, non-trivial exponents ,!3 can be found for some frequencies, 
and for these frequencies one can observe a self-similar fractal structure on the (Re X ,  Im X )  
plane. Slightly different properties demonstrate the ‘random’ rotation number. Here again 
for some frequencies a power-law growth of the spectrum can be observed, but now 
‘modulation’ appears not to be regular, see figure 7(a). The corresponding curve on the 
(Re X ,  Im X) plane (figure 7 ( b ) )  appears to be a random fractal, with tums left and right not 
repeating themselves for different scales. For some frequencies (e.g. curve b in figure 7(a)) 
it is difficult to judge whether there is really a power-law growth of the spectrum, or it 
saturates. 
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lX(GT)12 

T.80738 5 

Figure I. The same as figures 5 and 6, but for a 'random' rotation number (see the discussion 
in ihe text). 

Figure 8. The same as fiw 5, but for lhe model C (parameters 
are ihe same as in figure 4(b)). Curve (a) R = (1 t 0412, curve (b) 
R = (1 + 7m)/2. The asymptotic slops are almost exactly 2. 

4.3. Models B and C 

If the correlation function is similar to that for usual quasiperiodic motion, we can expect 
that the spectrum will also be discrete (see appendix B). Indeed, for the model C, 
whose AF is presented in figure 4, we have found that p = 2 for the frequencies 
Q = (1 + (Ur - I)w)/2 mod 1, k-integer (see figure 8). For this case of purely discrete 
spech'um we have also applied the approach of 13.91, where the spectral properties of SNA 
were discussed. The number of peaks, exceeding a threshold amplitude, indeed scales as 
a power law, as was suggested in [3]. However, a similar power law can be observed for 
the model B, where the non-strange torus is rather close to the SNA. Moreover, as one can 
see from (Bl), in the case of a non-strange torus which is discontinuous only in one point, 
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this power law will also occur. At present we can mention only one qualitative difference 
between spectra of SNA in the model C and spectra of usual quasiperiodic motion: in the 
latter &peaks appear at the frequencies ko mod 1, while in the former at the frequencies 
(1  + (2k - l)o)/Z mod 1. 

5. Discussion and conclusion 

We have demonstrated that the strange non-chaotic attractor may have rather unusual spectral 
and correlation properties. Its autocorrelation function can have a self-similar structure with 
peaks of moderate (neither close to one, nor small) amplitude occurring at resonant times 
of the quasiperiodic forcing. The spectrum is singular continuous and is represented by a 
fractal curve on the complex plane. 

We have considered only the simplest model of SNA. The question thus arises, whether 
the observed properties are general. First, it should be noted that already within this simple 
symmetrical model some modifications of forcing (model C above) lead to the disappearance 
of the singular continuous spectrum, and a discrete spectrum similar to that of a usual 
quasiperiodic motion (albeit at unusual frequencies) is observed. This is probably connected 
to subtle properties of irrationals, as discussed in [12]. We hope to discuss this point more 
thoroughly in the future. Second, it is worth noting that the spectrum is not an invariant 
of the system (in contrast, e.g. to the Lyapunov exponent) and depends on an observable. 
In general. one can expect that the observable represents a composition of SNA and a circle 
map (e.g. for system (1) and (2) a general observable y = F ( x ,  e )  may be a function of 
both x and 8). In this case a mixture of usual discrete spectrum and a singular continuous 
spechum may appear, and at present it is not clear how they can be separated. 

One conclusion that can be made from the results of our paper is that usual methods of 
determining the power spectrum may be inadequate for SNA. Indeed, in these methods (see, 
for example, [15]) it is implicitly supposed that all spectral components are of the same 
nature (discrete or continuous), therefore singular continuous components are not detectable. 
Only in the case when there is no singular continuous spectrum (model C), standard methods 
may be applied, and then the question of distinguishing between spectra of SNA and usual 
quasiperiodic attractor makes sense. In [3, 41 it was proposed to measure how many 
spectral components exceed some threshold. In the case of SNA this number decreases with 
the threshold value as a power law. However, as it follows from the expressions for the 
power spectrum of usual quasiperiodic motion, if the observable is a discontinuous function 
of the angle variable, then such a power law will be observed as well (see (BI)). 

Finally, in our analysis of the power spectrum we mainly used the approach of [IZ]. It 
happened that the spectral properties of the SNA considered above are rather close to the 
properties of a discrete symbolic model considered in [12]. In particular, our figure 6 is 
similar to figure 6 in [12]. Therefore, we hope that an appropriate symbolic model will 
allow us to explain the correlation and spectral properties of SNA [14]. 
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Appendix A. Basic properties of Diophantine approximations [16,17] 

Each irrational 0 < w < 1 can be represented as an infinite continuous fraction 

A S Pikovsky and U Feudel 

1 
o= = [a] ,  0 2 ,  ... I 

with integer ai ,  The best rational approximations for the irrational are obtained if one takes 
finite continuous fractions 

P. w" = - 
q" 

where p .  and qn satisfy the recursion relations 

p n  = a d n - ]  + qn = a , q ~  + qn-2  PO = 0 qo = p i  = 1 qi = al . 
('43) 

At the 'resonant times' qn the circle map (2) nearly repeats itself, because Iw - p, /q , l  < 
5-'/2q;2 (e.g. for the golden mean lwgm - pJqnl  = q;'(aq, ,  + ( - w ~ , ) " + ~ ) - ~ ) .  

The quadratic irrationals (solutions of the quadratic equation with integer coefficients) 
are represented by periodic continuous fractions. Below we present continuous fractions for 
some irrationals, used in this paper. 

Golden mean: wg, = ( l /s - 1)/2 = [I ,  I. 1,. . .I 

Silver mean: w,, = ,hi - I = [z, 2, 2, 2, . . .I 

Bronze mean: U = (d% - 1)/2 = [3,3,3,. . .I 
3 10 33 109 360 1198 P./qn = 4. 5. E2 iB> 

pnlqn = $, Ti. 

Pn/4 .  = t. 77 7' E? i 7 3  99' 239' 577'  

Pnlqn - ,. 3. 21 '  89- 377' m,... 

X g 7  3927.. 

Tinmean: 0 = 4 - ~ = [ 4 , 4 , 4 , 4  ,... I 
4 72 305 1292 z7 m, m, ... 

Modified silver mean: o = f i / 2  = [ I ,  2,2,2, . . .] 
2 2 12 29 70 169 

Modified tin mean: w = (& + 1)/4 = [ 1 ,4 ,4 ,4 , .  

- 4 72 30s 1292 

'Random irrational': 

985 
1393 ' ' 
- 
. I  

w = [ 1 , 2 , 1 , 1 , 1 , 2 , 1 , 2 , 2 , 2 , l ,  1 ,2 ,2 ,1 ,1 ,2 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,1 ,1 ,2 ,11  ... ] 
- L  2 1. I 8 21 29 ?p 187 453 640 a 2826 6745 

p n l q n -  1 '  3 ,  4 '  7 '  f i t  5, 40' 109' =+ &?,Es 1508' m9 9306'"' 



Strange non-chaotic atfractors 5219 

Appendix B. Correlations and spectra of usual quasiperiodic motion 

Suppose that the observed vliable yn may be represented as a one-valued function of the 
circle variable S, as y = G(S), and e,, is govemed by the circle mapping (2). The Fourier 
series of the periodic function G(0)  is 

m 

c(e) = gk eiakR g-k = 8; I 
-m 

The autocorrelation function is then 

itself a quasiperiodic function. It has values close to R(0) i 
for which or w 0 (mod 1). 

The spectrum of y .  
m 

has only &peaks on the harmonics of w [IS]: 
m 

-m 
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